*	EOP	
	Waterkeeper commented on draft pe	rmit

Permit Number	Facility Name	SIC	County	City
Narrative Cri	teria Apply (No NNC)			
MT0000264	Cenex Harvest States Cooperative	2911	Yellowstone	Laurel
MT0030066	COLUMBIA FALLS ALUMINUM CO	3334	Flathead	Columbia Falls
MT0000396	CORETTE THERMAL PLANT	4911	Yellowstone	Billings
MT0024210	DECKER COAL CO (EAST MINE)		Big Horn	Decker
MT0000892	DECKER COAL CO (WEST MINE)		Big Horn	Decker
MT0028321	EXXON MOBIL BILLINGS REFINERY	2911	Yellowstone	Billings
MT0000477	EXXONMOBIL REFINING & SUPPLY	2911	Yellowstone	Billings

MT0031623 MT0000094	IOFINA NATURAL GAS WATER TREATMENT FACILITY JOHN R DAILY INC	1311 2013	Hill Missoula	Gildford, Missoula
MT0000302	MDU - LEWIS & CLARK PLANT	4911	Richland	
MT0000388	MONTANA RAIL LINK -LIVINGSTON RAIL YARD	4011 and	dPark	Livingston
MT0021431	MT BEHAVIORAL HEALTH INC WWTP	8062	Deer Lodge	Galen
MT0030287	REVETT SILVER COMPANY - ROCK CREEK MINE	1021	Sanders	planning to install RO.
MT0000248	SIDNEY SUGARS INCORPORATED	2063	Richland	
MT0000485 TOTAL	TRIDENT PLANT	3241	Gallatin 15	Three Forks
Nondischarg	ing; CAFO or N/A			
MT0000884	BIG SKY COAL COMPANY - BIG SKY MINE	1221	Rosebud	Colstrip

MT0028983	BULL MOUNTAIN MINE #1	1221	Musselshell	
		1221		under 25 yr
MT0031534	CATTLE DEVELOPMENT CENTER		Yellowstone	event.
MT0000256	Conoco Phillips Billings Refinery	291	Yellowstone	Billings
N4T0020724	FIDELITY - TONGUE RIVER PROJECT	1211	Die Heur	
MT0030724	WTF	1311	Big Horn	N/A: must
				retain runoff under 25 yr
MT0030741	HEADWATERS LIVESTOCK AUCTION		Broadwater	event.
MT0031593	JAMES GUERCIO - OW RANCH	1311	Big Horn	
MT0024619	SPRING CREEK MINE	1221	Big Horn	Decker

MT0023965	WESTERN ENERGY CO - ROSEBUD MINE	1221	Rosebud	Colstrip
MT0023604 TOTAL Numeric Nu	WESTMORELAND SAVAGE CORP - SAVAGE MINE trient Criteria Apply - Known I	1221 EOP.	Richland 10	Savage
MT0030147	ASARCO INC	3339	Lewis and Clark	East Helena
MT0030031	ASARCO LLC - MIKE HORSE/ANACONDA MINE WATER TREATMENT SYSTEM	1021	Lewis and Clark	
MT0000451	ASH GROVE CEMENT COMPANY	1422 a	ndJefferson	becpageטומוע
MT0027821	BEAVERHEAD TALC MINE	1499	Madison	Permit determined RP. General variance
MT0023566	ELKHORN HEALTH CARE WWTP	8051	Jefferson	Alhambra
MT0000191	MONTANA RESOURCES		Silver Bow	Butte
MT0000230	MONTANA SULPHUR & CHEMICAL CO	2819	Yellowstone	Billings

MT0028428	MONTANA TUNNELS MINING INC	1099	Jefferson	
MT0030643	SLEEPING BUFFALO HOT SPRINGS - LAGOON		Phillips	Saco
MT0026808	STILLWATER MINING COMPANY	1099	Sweet Grass	Big Timber
MT0000281 MT0021229	WESTERN SUGAR COOPERATIVE WESTMORELAND RESOURCES INC - ABSALOKA MINE	2063 1221	Yellowstone Big Horn	Hardin
MT0020460 TOTAL	YELLOWSTONE BOYS & GIRLS RANCH		Yellowstone	Billings
Numeric Nutr	ient Criteria Apply - RO Need	ed usin	g Stillwater Ex	ample
MT0030678	BARRETTS MINERALS - REGAL MINE	1099	Beaverhead	
MT0029891	BARRETTS MINERALS INC	1499	Beaverhead	Prime Meridian
MT0028584	LUZENAC AMERICA INC - YELLOWSTONE MINE	1499	Madison	verification
MT0030279	MONTANORE MINERALS CORP MONTANORE MINE	1021 and	dLincoln	from Maggie Pierce re. RO
MT0024716 TOTAL	STILLWATER MINING COMPANY	1021	Stillwater 5	Nye
without site-s	specific analysis			
MT0000019	BN WHITEFISH FACILITY	4011	Flathead	Whitefish

MT0023639	BOULDER HOT SPRINGS WWTP		Jefferson	Boulder
MT0030015	M & W MILLING & REFINING INC M&K OIL COMPANY - WRIGHT CREEK	1041	Madison	
MT0030392	WATER DISPOSAL FACILITY	1311	Powder River	
MT0029980	MONTANA AVIATION RESEARCH CO PINNACLE GAS RESOURCES - COAL	4941	Valley	
MT0030660	CREEK DEVELOPMENT UNIT	1311	Big Horn	
				Silver Bow listed for nutrients; WLA
MT0030350	REC ADVANCED SILICON MATERIALS LLC	3339	Silver Bow	of 0. Abt report
W110030350	TVX MINERAL HILL INC -TVX	3339	Sliver Bow	assumes RO.
MT0030252	MINERAL HILL MINE	1041	Park	Gardiner
MT0031411	WOLF MOUNTAIN COAL	1221	Big Horn	
MT0030180	YELLOWSTONE ENERGY LIMITED PARTNERSHIP FACILITY	4911	Yellowstone	Billings
TOTAL			10	
Sum			53	

Receiving Water	Permit Date	Type of Facility	Effluent Stream
Yellowstone River	1999	Petroleum Refinery	Outfall 001 - Process Wastewater Cooling Tower Blowdown Collected Stormwater Runoff emissions scrubber water, cooling
Flathead River	1998	aluminum reduction plant	water from direct chill casting and sewage treatment plant effluent
Yellowstone River	1999	coal fired steam electric generating plant	sewage treatment plant effluent Outfall 003 - Discharge from the bottom ash handling system, and miscellaneous low volume wastes from plant floor drains, furnace seal water evaporation blowdown, and storm water runoff not to include runoff from coal stock piles
Tongue River			commingled storm water discharged
Reservoir Tongue River	2006	surface coal mine	from settling pond R-1 associated areas and commingled storm water from pond #1 007 — treated pit water and commingled storm water discharged from settling pond #24; 008 — spoil pile runoff and storm water discharged from settling pond #25 010 — spoil pile runoff and storm water discharged from settling pond #25
Reservoir	2006	surface coal mine	#26
Yellowstone River	2007	petroleum refining	001 Treated Wastewater
Yellowstone River	2009	petroleum refinery	001 — treated process wastewater from the refining process, 002 — noncontact cooling water

		duill and musdings beatless as a	
France Passers:	2000	drill and produce both natural	
Fresno Reservoir	2009	gas and iodine.	
Clark Fork River	2007	Food Processing, meat processing	Contact Cooling Water Discharge
			sump pump and screen
			Outfall 007 - Discharge from an ash
			disposal pond containing ash sluice
			water, evaporator and boiler blow
			down, floor drains, water treating
			sludge filter and softener rinse,
		coal fired steam electric	metal cleaning wastes and storm
Yellowstone River	2000	generating plant	water
		treatment plant (WWTP) that	
		treats wastewater from two	
		facilities. MRL operates it's own	
		railroad engine overhaul and	
		heavy maintenance facility and	
		Talgo-LRC, LLC (formerly known	
		as the Livingston Rebuild Center,	
		Inc.) operates a locomotive	001 — Discharge pipe at
Yellowstone River	2004	engine rebuilding facility.	Yellowstone River
	1		
		residents and employees of the	
		non-profit 501 C-3 corporation	
		•	001 — Continuous Discharge to
Clark Fork River	2007	(MBH) Galen Campus.	Surface Water
			003 - Storm water from the paste
			storage tailing ponds to
			Miller Creek
			004 - Direct discharge to Rock Creek
			005 (internal) - Domestic
			wastewater treatment system into
			the
			mine drainage wastewater
		underground copper and silver	treatment system (Internal
Clark Fork River	1997	mine	Outfall 005).
Outfall 002 — Ground		Time	unnamed irrigation return channel
water infiltration;			Outfall 002 — Process water to
Outfall 003 - Process			Yellowstone River via shallow
Ponds — Ground			ground water
water infiltration; and			Outfall 003 — Process water to
Outfall 004 — Land		The applicant processes sugar	unconfined shallow aquifer Land
application.		beets to produce refined sugar.	Application
1.12		non-leaching wet process to	11
Missouri Divor	2000		002 Treated Mestaviator
Missouri River	2009	manufacture cement.	002 Treated Wastewater
, , , , , , , , , , , , , , , , , , ,			T
Hay Coulees (tributary			
to Rosebud Creek)	2008	surface coal mine	21 outfalls. All treated stormwater

Rehder Creek? Likely		underground coal mine	001, 003, 006, 007, 008, 009 —
no nutrient sources.		(Bituminous and Lignite Coal	Alkaline Mine Drainage
May not have RP for		Mining). No explosives. Long wall	002, 004 — Coal Preparation Plants
nutrients.	2008	mine 1200' length.	005 — Western Alkaline Coal Mining
tributary to the WACO			
Custer Canal???			

Outfall 001 -Process Wastewater Collected Stormwater Runoff Contaminated groundwater

Outfall 002 -Yegen Drain (hooked hydrostatic testing water (potable 2008 up to Billings; N/A) Petroleum Refinery supply) Tongue River; see Abt coal bed natural gas - may not report re. mixing zone have RP for nutrients or may and lack of RP 2010 have mixing zone. concentrated animal feeding Privately Owned Treatment Works -Jefferson River 2004 Minor operation appears to have low treatment levels. May not have RP. coal bed natural gas 001 - Overflow structure of Pond 1; Mine drainage 002 - Overflow structure of Pond 2; Commingled coal plant wash down, Mine drainage and pit water, and CBNG produced water 007 - Overflow structure of Pond 17; Mine drainage surface coal mine; no discharge 012 - Overflow structure of Pond 39; Spring Creek at this point. Mine drainage

Rock Reservoir, Spring Creek, West Fork Armells Creek, Black Hank Creek, Donley Creek, Lee Coulee and Pony Creek. (assimilative capacity; small facility: stream listed for metals but no nutrients) Peabody and Garden Coulees?? (L3; 0.576 mgd)	1999	surface coal mine; use ammonia nitrate. Commonly use water and use for dust control. No discharge. surface coal mine; small facility (9 employees). Likely not to discharge or have RP for nutrients.	Multiple 003 - Overflow from South Pond 2; Mine drainage 004 - Overflow from Tipple Pond; Mine drainage 005 - Overflow from South Pond 3; Coal plant wash down and mine drainage
Prickly Pear Creek*	2010	Abandoned lead smelter	001 — Process Wastewater, Privately-owned, Minor Facility
(metals listing for creek; nutrient listing for Blackfoot River)*	2011	The Mike Horse and Anaconda Adits. Capped adits (mine drainage).	001A Mine drainage 003A Mine drainage
Prickly Pear Creek*	2010	non-leaching wet process to manufacture Portland cement.	002 Treated Wastewater and Storm Water 003 Regulated Storm Water
Middle Fork Stone Creek*	2006	former open-pit and underground talc mining operation undergoing post-closure reclamation stabilization	
Prickly Pear Creek*	2009	WWTP serves the residents and employees of a privately-owned nursing home facility	001 — Minor, Private
Silver Bow Creek* (WLA in Nutrient TMDL)	2000	Open pit copper molybdenum mine processed fuel gas to the refinery. Chemical products and gases are produced from the gas treatment process. The MSCC gas treatment process scrubs and de-sulfurizes fuel gases and	Outfall 004 - Tailings pond
Dry Creek - ? (flow of 3.5 MGD; assume EOP; Level 3?)	2007	processes hydrogen sulfide- containing gases into elemental sulfur (brimstone)	Outfall 001 - Minor - privately owned treatment works with non-contact cooling water

open pit metal mine and 001 — Mine Drainage and Storm flotation mill (silver, gold, and Water Spring Creek* 2007 base metals concentrate) 002 — Mine Drainage Beaver Creek* (TP listing) 2002 East Boulder River* Outfall 1 is only surface water (chl) 2000 discharge The applicant processes sugar 001 — Process Wastewater beets to produce refined sugar. Yegen Drain (Flow 002 — Process Wastewater and 9.36 MGD; Level I; Note: If can seasonally retain, RO Cooling Water 2009 004 — Process Wastewater EOP) may not be required. use for dust control. No 2003 Sarpy Creek* discharge. 012 Alkaline Mine Drainage and support for children, youth Canyon Creek 2004 and their families 001 Treated Wastewater 0.144 mgd; L3?? Left Fork Stone Creek open-pit talc mine; use 001 — Surface Water (1.6 MGD; L3)? 2006 explosives 002 — Surface Water 001 — Surface Water and Mine Pit Johnny Gulch and Water Unnamed Irrigation open-pit talc mining and sorting 002 — Surface Water 2009 operation; use explosives 003 — Surface Water Ditch The adit has been closed, 001 — Mine Drainage adit water flooded and site has undergone 002 — Mine Drainage adit water Libby Creek 2006 reclamation. 003 — Mine Drainage adit water mgd; L4. and water 0.65,mgd; L3 -- RO!!) 003 — Mine drainage to ground 2007 Nitrate listing.. platinum and palladium mine water mown without site-specific analysis Assimilative Capacity? 0.096 low Whitefish River 2010 flow; Level 3

Little Boulder River (assimilative capacity; small facility: stream listed for metals but		privately-owned Boulder Hot Springs domestic wastewater	
not nutrients)	2009	treatment facility.	_
Alder Creek	1000	milling facility for precious and	001 - Discharge is from the infiltration gallery. 002 - Discharge is from the underdrain to an infiltration gallery
	1998	base metals.	and then to groundwater
Belle Creek (0.017 mgd; L3)??	1998	Oil production	
		•	
East Fork Cherry Creek via Spring Coulee	2005	conventional potable water treatment plant	001-Process Water
via Spring Codice	2003	treatment plant	OUT-1 TOCESS WATER
Tongue River	2004		001 (process wastewater)
Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek	2010	Production of high purity polycrystalline silicon	001 — Minor Private 002 - Storm Water (integrated) 003 - Minor Private
		Abandoned underground	
Bear Creek	2001	precious metal mine	tailing storage
Monument Creek	2006	BituMinous Coal Screening Plant	of screening equipment; not from the physical washing of coal.)

steam and electric generating

up to Billings?

water ditch; hooking

2008

plant

	Monitoring Notes (impt to nutrients)	Average Flow (s)
3-Pielkenroad separators 2 API oil-water separators DAF Aerated Sludge Digestion Clarification Sludge retention pond 2 aerated retention ponds	Routine monitoring for flow and ammonia Ammonia limits - Daily Max = 418 lb/d 30 d avg = 191 lb/d	1994-1998 data Mean annual high monthly average Flow = 0.797 MGD Mean annual average monthly flow = 0.697 MGD
percolation ponds	No Nutrients monitoring requirements	2.4 and 2 mgd. Total 4.4 mgd discharge which consists of an estimated 210 gpm from the Corette Plant bottom ash waste
	No Nutrients monitoring requirements	water, 1 gpm from plant floor drains, 10 gpm from the furnace seal water, 12 gpm from the evaporator blowdown and storm runoff from the plant site not to include storm runoff from coal stockpiles
	No Nutrients requirements	Average: 0.89 mgd
sodimentation pends		
sedimentation ponds.		1.12 mgd
API separator, induced air floatation unit, a biological oxidation lagoon and three stabilization/polishing ponds		2352 gpm
separator, induced air flotation (IAF) unit, a biological		
oxidation lagoon, and stabilization/polishing ponds		Treatment Plant: 1 mgd

RO		
		Max: 0.139 (mgd)
	No Nutrients monitoring	42.34 mgd (majority is once-through cooling
	requirements	water). Ash pond discharge is 0.36 mgd
grit separation		
equalization tank		
oil skimming chemical coagulation		
flocculation		
dissolved air flotation		
multimedia filtration	No Nutrients monitoring	
carbon adsorption.	requirements	0.0384 mgd
activated sludge mechanical		
facility		Design flow: 0.1 mgd

primary settling achieved by the clarifier and in the various factory site impoundments plant consisting of a combined aeration tank and clarifier.

Outfall 1: 164,253 gpd. Outfall 2: 143,996 gpd

0.007 mgd

	No Nutrients monitoring		
sediment pond	requirements	0.33 mgd	

within the permitted area.		
Treatment consists of		
detention of process waters		
and storm water to allow	No Nutrients monitoring	
suspended solids to settle out.	requirements	175 gpm
·		<u>. </u>
04-11.001		
Outfall 001 -		
*cross-plate separators (solids		
and oil)		
*DAF		
*Activated sludge		
*Aeration and equilization	Ambient monitoring of	
tanks	Yegen Drain 2005-2007	
*Bio-oxidation ponds		
*holding and emergency	Total N = 15.02 mg/L	
ponds	(max)	
*stabilization/polishing ponds	total $P = 0.48 \text{ mg/L (max)}$	
71 51	,	Mean daily max = 0.70 mgd
Outfall 002 -	Have supplemental	Max daily max = 2.70 mgd
with potable water input no	1	_
treatment	for TN and TP	Max 30 d average = 0.75 mgd
treatment	IOI III alla IF	Jiviax 50 d average – 0.75 mgd
Liggins		
Higgins		
Loop Ion Exchange (IX)		050 4700
technology		850 or 1700 gpm
Higgins		
Loop Ion Exchange (IX)		
technology		0.52-5.43 mgd
Each outfall is associated with		
a sediment pond designed to		
contain the runoff from a 25-	No Nutrients monitoring	
year, 24-hour rainfall event.		0.02 mgd (?)

various sediment control facilities including ponds, traps

and alternate sediment control installations

No Nutrients monitoring

ontrol installations	requirements

control installations	requirements	
	No Nutrients monitoring requirements	The flow rate reported for this discharge was 0.576 MGD.
	3	
sedimentation, thickening,		
and filter pressing of sludge		55 gpm
constructed wetlands treatment system	No Nutrients monitoring requirements	32.5 gpm
Holding pond	No Nutrients monitoring requirements	Outfall 001: 0.043 mgd Outfall 002: 0.049 mgd Outfall 003: 0.08 mgd
Two sedimentation ponds		220,700 gpd
activated sludge Cantex		
package plant with no disinfection		Design Flow, Average (mgd): 0.015

Tailing is sluried to a tailing impoundment. Lime is added. at various points into the plant drainage culvert that drains to Dry Creek. In addition, as stated above, the solids content from water filters, softener regeneration wastewater and back flush water are discharged with noncontact cooling water.

Calculation are based on 5.04 mgd

1,439 gpm

		_
Sedimetnation ponds		
		1
disinfection, with discharge of		
effluent to a wetland area that		
flows into a constructed ditch		
that flows into. Beaver Creek.		Design flow: 0.0129 mgd
cells which remove nitrogen		
compounds through biological		
transformation.		737 gpm
		The average flow contributed by
		the each outfall is listed on the renewal
		application as: 2.1 million gallons per day (mgd)
		at
001 - two aerated treatment		Outfall 001; 2.4 mgd at Outfall 002; and 0.04 mgd
ponds.		(48.4 gallons per minute) at Outfall 004.
alternate sediment control	No Nutrients monitoring	
installations	requirements	
Three-cell facultative lagoon		
without disinfection.		Intermittent discharge. Design flow: 0.023 mgd
]	The state of the s
Pond		001: 666 gpm; 002: 236 gpm
		No discharge from Outfall 001.
		55 cfs
Drainfileds		
anaerobic biological		
treatment, and discharge to		
surface water.		2000 gpm
Sarrace Water.		Ecoo Phili

two-cell lagoon system		Design: 0.085 MGD. Average: 94 gpm
unlined impoundment	Nitrate/Nitrite as N permit limits are 1.0 for Outfall 001 and 10 fro outfall 002	
	No Nutrients monitoring	11.67
	requirements	11.67 gpm
third settling/evaporation pond	No Nutrients monitoring requirements	0.06 mgd. No discharge has been recorded
•	•	g g
		7
Equalization (EQ) basin,		
flocculation, clarification and		
neutralization. Treated		
wastewater mixes with cooling		
tower blowdown water prior to discharge.		0.8 mgd
to discharge.	No Nutrients monitoring	o.o mga
	requirements	2 gpm
	,	is expected to occur only during storm events
sedimentation pond.		greater than the 25-year/ 24-hour event)

pH adjustment 70 gpm

Nitrogen Constituents	Phosphorus Constituents	Notes	Current Level
Ammonia Avg Daily Max = 12 lb/d Highest Daily Max = 66 lb/d Mean 30 d avg = 5 lb/d Highest 30 d avg = 30 lb/d			Level 1
TN: min: 1.71; Max: 2.04, Av: 1.87	TP: min: <0.01, max: 0.18, av: 0.1		Level 4
TN: min: 0.46, Max: 3.39, Ave: 2.01 Total Ammonia, as N mg/L min: <0.1 max: 0.3 Av: <0.12 Nitrite, as N mg/L min: <0.05 max: 0.95 Av: <0.16	TP: min >0.01, max: 0.23, ave: 0.07		Level 4
Nitrate as N mg/L min: 0.06 max: 8.34 Av: 5.65 Total Nitrogen Effluent mg/L min: 18.5 Max: 18.5 Ave: 18.5	Total Phosphorous Effluent mg/L Min: 0.73 Max: 0.76 Ave: 0.75 2		Level 1

		Only NCCW effluent	Level 5
TN: Min: 7.05, Max: 39.9, ave: 23.06	TP: Min: 0.47, Max: 11.0, ave: 6.4		level 1
		Draft permit for a proposed facility	No need to cost
TN (mg/l) - Min: 2.5; max: 19.1, ave: 7.4.	TP (mg/l) - min 0.2, max: 1.1, Ave: 0.5.		Level 2

		CAFO	CAFO
Effluent TN (2 samples) Avg = 12.04 mg/L Max = 13.02 mg/L	Effluent TP (2 samples) Avg = 3.98 mg/L		
Receiving water TN (X samples)	Max = 4.96 mg/L Receiving water TP (X		
Avg = 15.02 mg/L	samples) Avg = 0.48 mg/L	Check DMR for additional data	Level 1
TN: 0.6			Level 4
		CAFO	CAFO
			Level 4
1		İ	1

"		
Ammonia as N: 1.52 mg/l	TP: 0.25 mg/l	Level 3
		Level 1
		Level 1
TN: Min: 1.09, Max: 84, ave:	TP: Min: 0.02, Max: 5.0, ave:	
16.3	1.9	level 1

Median and mean concentrations for TN was approx. 2.0 mg/l

Level 4

Level 1

			LC V C i I
		Proposed permit for a new	
		mine. level 3 (?)	level 3
001 - Total Ammonia as N (mg/l) Min: 16; Max: 44; Ave: 33.3			level 1
TN: Min: 9.6, Max: 19, ave:	TP: Min: 2.45, Max: 5.43,		
15.8	ave: 4.0		Level 1
001 TN: min 2.5; max 6.9; ave 4.21.			
002: min 2.0; max 4.3; ave 3.09			Level 3
Averages: Nitrate + Nitrite, as			
N 3.28; Ammonia, as N <0.01;			
Total Organic Nitrogen, as N			
0.7			Level 3
TN: min <0.07, max <1.95, av			
<0.021			Level 5
Averages: TON: 0.2; Ammonia:			
0.029; Nitrate-Nitrite: 0.074.	TP: Average 0.018		Level 4

Statement of Basis received was for a permit modification (outfall relocation)

<0.7	0.3		Level 3
		moving to non-discharging	No need to
		system.	cost
			Level 1

Level 3

Permit Number	Facility Name	SIC	County
MT0030147	ASARCO INC	3339	Lewis and Clark
MT0030031	ASARCO LLC - MIKE HORSE/ANACONDA MINE WATER TREATMENT SYSTEM	1021	Lewis and Clark
MT0000451	ASH GROVE CEMENT COMPANY	1422 and 3241	Jefferson
MT0030678	BARRETTS MINERALS - REGAL MINE	1099	Beaverhead
MT0029891	BARRETTS MINERALS INC	1499	Beaverhead
MT0027821	BEAVERHEAD TALC MINE	1499	Madison
MT0000884	BIG SKY COAL COMPANY - BIG SKY MINE	1221	Rosebud
MT0000019	BN WHITEFISH FACILITY	4011	Flathead
MT0023639	BOULDER HOT SPRINGS WWTP		Jefferson
MT0028983	BULL MOUNTAIN MINE #1	1221	Musselshell
MT0031534	CATTLE DEVELOPMENT CENTER		Yellowstone
MT0000264	Cenex Harvest States Cooperative	2911	Yellowstone
MT0030066	COLUMBIA FALLS ALUMINUM CO	3334	Flathead

MT0000256	Conoco Phillips Billings Refinery	291	Yellowstone
MT0000396	CORETTE THERMAL PLANT	4911	Yellowstone
MT0024210	DECKER COAL CO (EAST MINE)		Big Horn
W110024210	DECKER COAL CO (EAST WINE)		DIG HOTTI
MT0000892	DECKER COAL CO (WEST MINE)		Big Horn
MT0023566	ELKHORN HEALTH CARE WWTP	8051	Jefferson
1470000004		2011	W. II.
MT0028321	EXXON MOBIL BILLINGS REFINERY	2911	Yellowstone
MT0000477	EXXONMOBIL REFINING & SUPPLY FIDELITY - TONGUE RIVER PROJECT	2911	Yellowstone
MT0030724	WTF	1311	Big Horn

MT0030741	HEADWATERS LIVESTOCK AUCTION		Broadwater
MT0031623	IOFINA NATURAL GAS WATER TREATMENT FACILITY	1311	Hill
MT0031593 MT0000094	JAMES GUERCIO - OW RANCH JOHN R DAILY INC	1311 2013	Big Horn Missoula
MT0028584	LUZENAC AMERICA INC - YELLOWSTONE MINE	1499	Madison
MT0030015	M & W MILLING & REFINING INC	1041	Madison
MT0030392	M&K OIL COMPANY - WRIGHT CREEK WATER DISPOSAL FACILITY	1311	Powder River
MT0000302	MDU - LEWIS & CLARK PLANT	4911	Richland
MT0029980	MONTANA AVIATION RESEARCH CO	4941	Valley
MT0000388	MONTANA RAIL LINK -LIVINGSTON RAIL YARD	4011 and 4013	Park
MT0000191	MONTANA RESOURCES		Silver Bow
MT0000230	MONTANA SULPHUR & CHEMICAL CO	2819	Yellowstone

MT0028428	MONTANA TUNNELS MINING INC	1099	Jefferson
MT0030279	MONTANORE MINERALS CORP MONTANORE MINE	1021 and 1044	Lincoln
MT0021431 MT0030660	MT BEHAVIORAL HEALTH INC WWTP PINNACLE GAS RESOURCES - COAL CREEK DEVELOPMENT UNIT REC ADVANCED SILICON MATERIALS	8062 1311	Deer Lodge Big Horn
MT0030350	LLC	3339	Silver Bow
MT0030287	REVETT SILVER COMPANY - ROCK CREEK MINE	1021	Sanders
MT0000248	SIDNEY SUGARS INCORPORATED	2063	Richland
MT0030643	SLEEPING BUFFALO HOT SPRINGS - LAGOON		Phillips
MT0024619	SPRING CREEK MINE	1221	Big Horn
MT0026808	STILLWATER MINING COMPANY	1099	Sweet Grass
MT0024716	STILLWATER MINING COMPANY	1021	Stillwater

MT0000485	TRIDENT PLANT	3241	Gallatin
MT0030252	TVX MINERAL HILL INC -TVX MINERAL HILL MINE	1041	Park
MT0023965	WESTERN ENERGY CO - ROSEBUD MINE	1221	Rosebud
MT0000281	WESTERN SUGAR COOPERATIVE	2063	Yellowstone
MT0021229	WESTMORELAND RESOURCES INC - ABSALOKA MINE	1221	Big Horn
	WESTMORELAND SAVAGE CORP -		
MT0023604	SAVAGE MINE	1221	Richland
MT0031411	WOLF MOUNTAIN COAL	1221	Big Horn
MT0020460	YELLOWSTONE BOYS & GIRLS RANCH	7032	Yellowstone
MT0030180	YELLOWSTONE ENERGY LIMITED PARTNERSHIP FACILITY	4911	Yellowstone
Sum	53		

City	Receiving Water	Permit Date
East Helena	Prickly Pear Creek*	2010
	Mike Horse Creek and Blackfoot River (metals listing for creek; nutrient listing for Blackfoot River)*	2011
	Prickly Pear Creek*	2010
	0.144 mgd; L3??	
Prime Meridian	Left Fork Stone Creek (1.6 MGD; L3)?	2006
Closed. But seepageDraft Permit determined RP. General variance	Middle Fork Stone Creek*	2006
Colstrip	Lee, Emile, Miller, and Hay Coulees (tributary to Rosebud Creek)	2008
Whitefish	Whitefish River	2010
Boulder	Little Boulder River (assimilative capacity; small facility: stream listed for metals but not nutrients)	2009
	Rehder Creek? Likely no nutrient sources. May not have RP for nutrients.	2008
N/A: must retain runoff under 25 yr event.	Unnamed ephemeral tributary to the WACO Custer Canal???	

Laurel Yellowstone River 1999

Columbia Falls Flathead River 1998

Billings

Yegen Drain (hooked up to Billings; N/A) 2008

Billings	Yellowstone River	1999
Decker	Tongue River Reservoir	2006

Decker	Tongue River Reservoir	2006
Alhambra	Prickly Pear Creek*	2009

Billings	Yellowstone River	2007
Billings	Yellowstone River	2009
	Tongue River	2010

N/A: must retain runoff		
under 25 yr event.	Jefferson River	2004
Gildford,	Fresno Reservoir	2009
Missoula	Clark Fork River	2007
	Johnny Gulch and Unnamed Irrigation	
	Ditch	2009
	Alder Creek	1998
	Belle Creek (0.017 mgd; L3)??	1998

Yellowstone River

2000

East Fork Cherry Creek via Spring Coulee 2005

Livingston	Yellowstone River	2004	
	Silver Bow Creek* (WLA in Nutrient		
Butte	TMDL)	2000	
	Dry Creek - ? (flow of 3.5 MGD; ass	ume	
Billings	EOP; Level 3?)	2007	

Pending verification from Maggie Pierce re. RO Libby Creek 2006 Clark Fork River Z007 Tongue River Z004 Silver Bow listed for nutrients; WLA of 0 Outfall 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek Z010 Danning to install RO. Clark Fork River Z004 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 — Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) Z002 Decker Spring Creek Big Timber East Boulder River* (chl) Z007			
Pending verification from Maggie Pierce re. RO Clark Fork River Tongue River 2007 Tongue River 2004 Silver Bow listed for nutrients; WLA of 0 Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 Planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; 14. and			
Pending verification from Maggie Pierce re. RO Clark Fork River Tongue River 2007 Tongue River 2004 Silver Bow listed for nutrients; WLA of 0 Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 Planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chi) 2000 Stillwater River (0.94 mgd; 14. and			
Maggie Pierce re. RO Libby Creek 2006 Galen Clark Fork River 2007 Tongue River 2004 Silver Bow listed for nutrients; WLA of 0 Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; 14. and		Spring Creek*	2007
Maggie Pierce re. RO Libby Creek 2006 Galen Clark Fork River 2007 Tongue River 2004 Silver Bow listed for nutrients; WLA of 0 Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; 14. and			
Maggie Pierce re. RO Libby Creek 2006 Galen Clark Fork River 2007 Tongue River 2004 Silver Bow listed for nutrients; WLA of 0 Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; 14. and	Pending verification from		
Galen Clark Fork River Tongue River 2004 Silver Bow listed for Outfalls 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 planning to install RO. Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and		Libby Creek	2006
Tongue River 2004		,	
Tongue River 2004			
Tongue River 2004			
Tongue River 2004	Galen	Clark Fork River	2007
Decker Silver Bow listed for nutrients; WLA of 0 Outfall 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	Galeti	Clark I Olk Mivel	2007
Decker Silver Bow listed for nutrients; WLA of 0 Outfall 001 and 002 to Sheep Gulch Outfall 003 to Silver Bow Creek 2010 Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and		T D'	2004
planning to install RO. Clark Fork River Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and		l ongue River	2004
planning to install RO. Clark Fork River Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and			
Decker Decker Spring Creek East Boulder River* (chl) Clark Fork River 1997 Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. 2002 Stillwater River* (chl) 2000 Stillwater River (0.94 mgd; L4. and		•	
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	nutrients; WLA of 0	Outfall 003 to Silver Bow Creek	2010
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 001 — Yellowstone River; Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	planning to install DO	Clark Fank Birran	1007
Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	planning to install KO.	Clark Fork River	1997
Outfall 002 — Ground water infiltration; Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Outfall 003 - Process Ponds — Ground water infiltration; and Outfall 004 — Land application. Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and		Outfall 001 — Yellowstone River;	
Saco Beaver Creek* (TP listing) Decker Spring Creek Big Timber East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and		Outfall 002 — Ground water infiltration;	
Saco Beaver Creek* (TP listing) Decker Spring Creek Big Timber East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and		Outfall 003 - Process Ponds — Ground	
Saco Beaver Creek* (TP listing) 2002 Decker Spring Creek Big Timber East Boulder River* (chl) Stillwater River (0.94 mgd; L4. and		water infiltration; and	
Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and		Outfall 004 — Land application.	
Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Decker Spring Creek Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	Saco	Beaver Creek* (TP listing)	2002
Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and		(11 11 11 11 11 11 11 11 11 11 11 11 11	
Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and			
Big Timber East Boulder River* (chl) 2000 Stillwater River (0.94 mgd; L4. and	Dankan	Service Const.	
Stillwater River (0.94 mgd; L4. and	Decker	Spring Creek	
Stillwater River (0.94 mgd; L4. and			
Stillwater River (0.94 mgd; L4. and			
	Big Timber	East Boulder River* (chl)	2000
Nya 0.65 mgd·13 POII) Nitrata listing 2007		Stillwater River (0.94 mgd; L4. and	
ivye 0.05,iiigu, L5 NO!!) iviti ate listilig Z00/	Nye	0.65,mgd; L3 RO!!) Nitrate listing	2007

Three Forks	Missouri River	2009
Gardiner	Bear Creek	2001
Colstrip	Stocker Creek, Hay Coulee, South Fork Cow Creek, Cow Creek, East Fork Armell Creek, Castle Rock Reservoir, Spring Creek, West Fork Armells Creek, Black Hank Creek, Donley Creek, Lee Coulee and Pony Creek. (assimilative capacity; small facility: stream listed for metals but no nutrients)	s 1999
colotp	but no nutrients,	1000
	Yegen Drain (Flow 9.36 MGD; Level I; EOP)	2009
Hardin	Sarpy Creek*	2003
	Peabody and Garden Coulees?? (L3;	
Savage	0.576 mgd)	2008
	Monument Creek	2006
Billings	Canyon Creek	2004
	ExxonMobil storm water ditch; hooking	
Billings	up to Billings?	2008

Type of Facility			
Abandoned lead smelter			
The Mike Horse and Anaconda Adits. Capped adits (mine drainage).			
non-leaching wet process to manufacture Portland cement.			
open-pit talc mine; use explosives			
former open-pit and underground talc mining operation undergoing post-closure reclamation stabilization			
surface coal mine			
Assimilative Capacity? 0.096 low flow; Level 3			
privately-owned Boulder Hot Springs domestic wastewater treatment facility.			
underground coal mine (Bituminous and Lignite Coal Mining). No explosives. Long wall mine 1200' length.			

Petroleum Refinery

aluminum reduction plant

Petroleum Refinery	
coal fired steam electric generating plant	
surface coal mine	
parrace coar mine	
surface coal mine	
WWTP serves the residents and employees of a privately-	
owned nursing home facility	
petroleum refining	
petroleum refinery	
coal bed natural gas	

drill and produce both natural gas and iodine.

coal bed natural gas
Food Procesing, meat processing

open-pit talc mining and sorting operation; use explosives

milling facility for precious and base metals.

coal fired steam electric generating plant

Oil production

conventional potable water treatment plant

MRL operates a wastewater treatment plant (WWTP) that treats wastewater from two facilities. MRL operates it's own railroad engine overhaul and heavy maintenance facility and Talgo-LRC, LLC (formerly known as the Livingston Rebuild Center, Inc.) operates a locomotive engine rebuilding facility.

Open pit copper molybdenum mine

MSCC processes refinery "acid gas" and "sour fuel gas" from ExxonMobil and returns processed fuel gas to the refinery. Chemical products and gases are produced from the gas treatment process. The MSCC gas treatment process scrubs and de-sulfurizes fuel gases and processes hydrogen sulfide-containing gases into elemental sulfur (brimstone)

The Galen WWTP serves the residents and employees of the non-profit 501 C-3 corporation Montana Behavioral Health, Inc. (MBH) Galen Campus. Production of high purity polycrystalline silicon underground copper and silver mine The applicant processes sugar beets to produce refined sugar. surface coal mine; no discharge at this point.

open pit metal mine and flotation mill (silver, gold, and

The adit has been closed, flooded and site has

base metals concentrate)

undergone reclamation.

platinum and palladium mine

Abandoned underground precious metal mine surface coal mine; use ammonia nitrate. Commonly use water and use for dust control. No discharge. The applicant processes sugar beets to produce refined sugar. surface coal mine; use ammonia nitrate. Commonly use water and use for dust control. No discharge. surface coal mine; small facility (9 employees). Likely not to discharge or have RP for nutrients. BituMinous Coal Screening Plant psychiatric and other treatment and support for children, youth and their families

non-leaching wet process to manufacture cement.

steam and electric generating plant

Effluent Stream
001 — Process Wastewater, Privately-owned, Minor Facility
001A Mine drainage 003A Mine drainage
001 Treated Wastewater and Storm Water 002 Treated Wastewater and Storm Water 003 Regulated Storm Water
001 — Surface Water 002 — Surface Water
001 Mine Drainage 21 outfalls. All treated stormwater
001, 003, 006, 007, 008, 009 — Alkaline Mine Drainage 002, 004 — Coal Preparation Plants 005 — Western Alkaline Coal Mining

Outfall 001 Process Wastewater
Cooling Tower Blowdown
Collected Stormwater Runoff

paste plant briquette cooling water, emissions scrubber water, cooling water from direct chill casting and sewage treatment plant effluent

Outfall 001 -**Process Wastewater** Collected Stormwater Runoff Contaminated groundwater Outfall 002 hydrostatic testing water (potable supply) Outfall 002 - once-through cooling water Outfall 003 - Discharge from the bottom ash handling system, and miscellaneous low volume wastes from plant floor drains, furnace seal water evaporation blowdown, and storm water runoff not to include runoff from coal stock piles 002 — treated pit water and commingled storm water discharged from settling pond R-1 001 — treated pit water and commingled storm water discharged from pond #4; 005- treated coal preparation plant associated areas and commingled storm water from pond #1 007 — treated pit water and commingled storm water discharged from settling pond #24; 008 — spoil pile runoff and storm water discharged from settling pond #25 010 — spoil pile runoff and storm water discharged from settling pond #26 001 — Minor, Private

001 Treated Wastewater 001 — treated process wastewater from the refining process, 002 — noncontact cooling water

Privately Owned Treatment Works - Minor	
Outfall 001 - Minor Industrail Non-Contact Cooling Water Discharge	
001 — Surface Water and Mine Pit Water 002 — Surface Water 003 — Surface Water	
001 - Discharge is from the infiltration gallery. 002 - Discharge is from the underdrain to an infiltration gallery and then to groundwater	
Outfalls 002 and 004 - once-through non-contact cooling water (002 winter, 004 summer) Outfall 003 - wash water from sand sump pump and screen Outfall 007 - Discharge from an ash disposal pond containing ash sluice water, evaporator and boiler blow down, floor drains, water treating sludge filter and softener rinse, metal cleaning wastes and storm water	
001-Process Water	
001 — Discharge pipe at Yellowstone River	
Outfall 004 - Tailings pond	
Outfall 001 - Minor - privately owned treatment works with non-contact cooling water	

001 — Mine Drainage and Storm Water

002 — Mine Drainage

001 — Mine Drainage adit water

002 — Mine Drainage adit water

003 — Mine Drainage adit water

001 — Continuous Discharge to Surface Water

001 (process wastewater)

001 — Minor Private

002 - Storm Water (integrated)

003 - Minor Private

001 - Direct discharge to the Clark Fork River,

002 - Seepage discharge to ground water hydraulically

connected to Clark Fork River from the tailing facility

003 - Storm water from the paste storage tailing ponds to

Miller Creek

004 - Direct discharge to Rock Creek

005 (internal) - Domestic wastewater treatment system into the mine drainage wastewater treatment system (Internal

Outfall 005).

Outfall 001 — Process water to unnamed irrigation return channel

Outfall 002 — Process water to Yellowstone River via shallow ground

water

Outfall 003 — Process water to unconfined shallow aquifer Land

Application

001 - Overflow structure of Pond 1; Mine drainage

002 - Overflow structure of Pond 2; Commingled coal plant wash down,

Mine drainage and pit water, and CBNG produced water

007 - Overflow structure of Pond 17; Mine drainage

012 - Overflow structure of Pond 39; Mine drainage

Outfall 1 is only surface water discharge

001 — Mine discharge direct to Stillwater River

002 — Mine drainage to ground water

003 — Mine drainage to ground water

002 Treated Wastewater

tailing storage

Multiple

001 — Process Wastewater

002 — Process Wastewater and Cooling Water

004 — Process Wastewater

012 Alkaline Mine Drainage

001 - Overflow from North Pond 2; Mine drainage

002 - Overflow from South Pond 1; Mine drainage

003 - Overflow from South Pond 2; Mine drainage

004 - Overflow from Tipple Pond; Mine drainage

005 - $\operatorname{Overflow}$ from South Pond 3; Coal plant wash down and mine drainage

001, Process wastewater (washdown of screening equipment; not from the physical washing of coal.)

001 Treated Wastewater

Treatment System	Monitoring Notes (impt to nutrients)
pH adjustment, sedimentation, thickening, and filter pressing of sludge	
constructed wetlands treatment system	No Nutrients monitoring requirements
Holding pond	No Nutrients monitoring requirements
Pond	
Two sedimentation ponds	No Nutrients monitoring
sediment pond	requirements
two-cell lagoon system	
nine storm water detention ponds to treat waste and storm water runoff from within the permitted area. Treatment consists of detention of process waters and	No Nutrients monitoring
storm water to allow suspended solids to settle out.	requirements
3-Pielkenroad separators 2 API oil-water separators DAF	Routine monitoring for flow and ammonia
Aerated Sludge Digestion Clarification Sludge retention pond	Ammonia limits - Daily Max = 418 lb/d 30 d avg = 191 lb/d
2 aerated retention ponds	

No Nutrients monitoring requirements

Outfall 001 - *cross-plate separators (solids and oil)	
*DAF *Activated sludge *Aeration and equilization tanks	Ambient monitoring of Yegen Drain 2005-2007
*Bio-oxidation ponds *holding and emergency ponds *stabilization/polishing ponds	Total N = 15.02 mg/L (max) total P = 0.48 mg/L (max)
Outfall 002 - with potable water input no treatment	Have supplemental monitoring requirements for TN and TP
	No Nutrients monitoring requirements
	No Nutrients requirements
sedimentation ponds.	
Continuous discharge, mechanical, extended aeration	
activated sludge Cantex package plant with no disinfection	
API separator, induced air floatation unit, a biological oxidation lagoon and three stabilization/polishing ponds	
The Wastewater Treatment Plant (Outfall 001) consists of an American Petroleum Instituteapproved (API) separator, induced air flotation (IAF) unit, a biological oxidation	

lagoon, and stabilization/polishing ponds

Loop Ion Exchange (IX) technology

Higgins

RO	
Higgins	
Loop Ion Exchange (IX) technology	
	Nitrate/Nitrite as N permit limits
	are 1.0 for Outfall 001 and 10 fro
unlined impoundment	outfall 002
	No Nutrients monitoring
	requirements

two unlined settling/evaporation ponds, each of which discharges to a third settling/evaporation pond

grit separation equalization tank oil skimming chemical coagulation flocculation dissolved air flotation multimedia filtration carbon adsorption. No Nutrients monitoring requirements

No Nutrients monitoring requirements

No Nutrients monitoring requirements

Tailing is sluried to a tailing impoundment. Lime is added.

After non-contact cooling water is used, it is discharged at various points into the plant drainage culvert that drains to Dry Creek. In addition, as stated above, the solids content from water filters, softener regeneration wastewater and back flush water are discharged with non-contact cooling water.

Sedimetnation ponds	
Drainfileds	
activated sludge mechanical facility	
Equalization (EQ) basin, flocculation, clarification and neutralization. Treated wastewater mixes with cooling	
tower blowdown water prior to discharge.	
primary settling achieved by the clarifier and in the various factory site impoundments	
1-acre, single-cell facultative lagoon system with no disinfection, with discharge of effluent to a wetland area that flows into a constructed ditch that flows into. Beaver Creek.	
	No Nutrients monitoring
Each outfall is associated with a sediment pond designed to	ino inutrients monitoring

contain the runoff from a 25-year, 24-hour rainfall event. requirements

The adit water will pass through anoxic biotreatment cells which remove nitrogen compounds through biological transformation.

coagulation,

flocculation, settling, reuse, anaerobic biological treatment, and discharge to surface water.

extended aeration package plant consisting of a combined aeration tank and clarifier.	No Nutrients monitoring requirements
various sediment control facilities including ponds, traps and alternate sediment control installations	No Nutrients monitoring requirements
001 - two aerated treatment ponds. sediment control facilities including ponds, traps and alternate sediment control installations	No Nutrients monitoring requirements No Nutrients monitoring
sedimentation pond.	requirements
Three-cell facultative lagoon without disinfection.	

pH adjustment

Average Flow (s)	Nitrogen Constituents
55 gpm	Ammonia as N: 1.52 mg/l
32.5 gpm	
Outfall 001: 0.043 mgd Outfall 002: 0.049 mgd	
Outfall 003: 0.08 mgd	
	001 TN: min 2.5; max 6.9; ave 4.21.
	002: min 2.0; max 4.3; ave 3.09
oor. coo gpm, ooz. Zoo gpm	
220,700 gpd	
0.33 mgd	
	TN: Min: 0.33, Max: 2.11, ave:
Design: 0.085 MGD. Average: 94 gpm	0.84
175 gpm	
1/2 gpm	

1994-1998 data
Mean annual high monthly average Flow = 0.797 MGD

Mean annual average monthly flow = 0.697 MGD

Ammonia Avg Daily Max = 12 lb/d Highest Daily Max = 66 lb/d Mean 30 d avg = 5 lb/d Highest 30 d avg = 30 lb/d

2.4 and 2 mgd. Total 4.4 mgd

Effluent TN (2 samples) Avg = 12.04 mg/L Max = 13.02 mg/L

Mean daily max = 0.70 mgd Max daily max = 2.70 mgd Mean 30 d average = 0.50 mgd Max 30 d average = 0.75 mgd Receiving water TN (X samples) Avg = 15.02 mg/L

Outfalls 002 is a discharge of condenser cooling water with an estimated flow of 50 MGD and a maximum flow of 131 MGD. Outfall 003 is a discharge which consists of an estimated 210 gpm from the Corette Plant bottom ash waste water, 1 gpm from plant floor drains, 10 gpm from the furnace seal water, 12 gpm from the evaporator blowdown and storm runoff from the plant site not to include storm runoff from coal stockpiles

	TN: min: 1.71; Max: 2.04, Av:
Average: 0.89 mgd	1.87

	TN: min: 0.46, Max: 3.39, Ave:
1.12 mgd	2.01
	TN: Min: 1.09, Max: 84, ave:
Design Flow, Average (mgd): 0.015	16.3
	Total Ammonia, as N mg/L
	min: <0.1 max: 0.3 Av: <0.12
	Nitrite, as N mg/L min: <0.05
	max: 0.95 Av: <0.16
	Nitrate as N mg/L min: 0.06
2352 gpm	max: 8.34 Av: 5.65
	Total Nitrogen Effluent mg/L
Treatment Plant: 1 mgd	min: 18.5 Max: 18.5 Ave: 18.5
850 or 1700 gpm	TN: 0.6

0.52.5.42	
0.52-5.43 mgd 3-day Average: 0.0619. Daily Min: 0.045. Daily Max: 0.139 (mgd)	
3-day Average: 0.0619. Daily Min: 0.045. Daily Max: 0.139 (mgd)	
No discharge from Outfall 001. 55 cfs	Averages: Nitrate + Nitrite, as N 3.28; Ammonia, as N <0.01; Total Organic Nitrogen, as N 0.7
11.67 gpm	
42.34 mgd (majority is once-through cooling water). Ash pond discharge is 0.36 mgd	
0.06 mgd. No discharge has been recorded	
0.0384 mgd	
	Median and mean
	concentrations for TN was
Calculation are based on 5.04 mgd	approx. 2.0 mg/l
1,439 gpm	
	•

	Nitrate plus Nitrite as Nitrogen. Average. Outfall 001: <0.05. Outfall 002: 0.33
	TN: min <0.07, max <1.95, av <0.021
Design flow: 0.1 mgd	TN: Min: 7.05, Max: 39.9, ave: 23.06
0.8 mgd	TN: min <0.1, max 2.6, ave: <0.7
Outfall 1: 164,253 gpd. Outfall 2: 143,996 gpd	
Design flow: 0.0129 mgd	
0.02 mgd (?)	
737 gpm	
2000 gpm	Averages: TON: 0.2; Ammonia: 0.029; Nitrate-Nitrite: 0.074.

TN (mg/l) - Min: 2.5; max:
19.1, ave: 7.4.

2 gpm

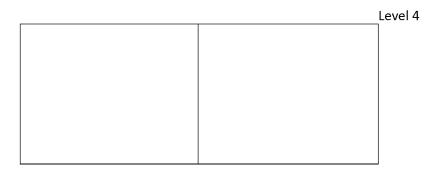
0.007 mgd

The average flow contributed by the each outfall is listed on the renewal application as: 2.1 million gallons per day (mgd) at Outfall 001; 2.4 mgd at Outfall 002; and 0.04 mgd (48.4 gallons per minute) at Outfall 004.

001 - Total Ammonia as N (mg/l) Min: 16; Max: 44; Ave: 33.3

The flow rate reported for this discharge was 0.576 MGD.

4800 gpd (Effluent discharged to surface waters is expected to occur only during	
storm events greater than the 25-year/ 24-hour event)	
	TN: Min: 9.6, Max: 19, ave:
Intermittent discharge. Design flow: 0.023 mgd	15.8


70 gpm

Phosphorus Constituents		Current Level
TP: 0.25 mg/l		Level 3
		Level 1
		Level 3
		Level 1
	Statement of Basis received was for a permit modification (outfall relocation)	
TP: Min: <0.05, Max: 0.21, ave: 0.10		Level 3
470.0.10		
	CAFO	CAFO

Avg = 3.98 mg/L Max = 4.96 mg/L		
Receiving water TP (X samples) Avg = 0.48 mg/L	Check DMR for additional data	Level 1
TP: min: <0.01, max: 0.18, av: 0.1		Level 4
TP: min >0.01, max: 0.23, ave: 0.07		Level 4
TP: Min: 0.02, Max: 5.0, ave: 1.9		level 1
		1! 1
Total Phosphorous Effluent		Level 1
mg/L Min: 0.73 Max: 0.76 Ave: 0.75 2		Level 1
		Level 4

Effluent TP (2 samples)

 CAFO	CAFO
	Level 5
	Level 4
Only NCCW effluent	
	Level 3
	Level 1
	J

		level 5
		Level 5
TP: Min: 0.47, Max: 11.0, ave: 6.4		level 1
ave. 0.4	proposed facility	Level 1
TP: min 0.08, max: 0.4. av: 0.3		Level 3
	Draft permit for a proposed facility	No need to cost
		level 1
		Level 1
	Proposed permit for a new	
	mine. level 3 (?)	level 3

Level 4

TP: Average 0.018

to

Level 1
TP: Min: 2.45, Max: 5.43,
ave: 4.0
Level 1

Level 3